

Many choices arise in the design and
implementation of client/server apps

® Application layering (two vs. three tier)
® Whether the client is multi-threaded
® Whether the server is multi-threaded

, Wait for result
CHOTIT ———sese

Request

Provide service Time —>

User-interface

User interface

level
\ HTML page \
Keyword expression containing list
HTML
generator Processing

Query % Ranked list level
generator

of page titles
Ranking

algorithm]

Database queries

Web page titles
with meta-information

Database Data level

with Web pages

The simplified organization of an Internet search engine into three different layers.

The simplest organization is to have only two
types of machines:

A client machine containing only the programs
implementing (part of) the user-interface level

A server machine containing the rest,

® the programs implementing the
processing and data level

User interfaggl

Nlinant mansrhina
A\

norie rract i

User interface

User interface

Application

User interface Y
Application Application) _Appllcatlon
Database Database Database
Server machine
(a) (b) (c)

User interface

User interface

Application Application

Database
/’——\\

| //
___~_-—$~-- __,f’
$’ ///// N\
// !
Database T Database ‘
(d) (e)

Figure 2-5. Alternative client-server organizatians (a)—(e).

thin client

User interface Wait for result

(presentation)

Request
operation
Application _____________ _/\!e_u} _f?[_d_"’l_t? _________________
server
Request data Return data
Database N I
server
Time >

An example of a server acting as client.

Goal: Provide the means for users to interact with
remote servers

Multithreading

® hide communication latency

® allow multiple simultaneous connections

Must know or find out the location of the server
® known endpoint (port) vs. a lookup mechanism

Blocking (synchronous) request or non-blocking
(asynchronous)

Replication transparency

Client machine Server 1 Server 2 Server 3

Client Server Server Server
appl appl appl appl

2z al

Client side handles

request replication Replicated request

Transparent replication of a server using a client-side solution.

Providing endpoint information

® Known endpoint

® Daemon listening at endpoint

® superserver that spawns threads
Connection-oriented or connection-less servers

® TCP or UDP?

Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

Stateful or stateless servers

Providing endpoint information

® Known endpoint

® Daemon listening at endpoint

® superserver that spawns threads
Connection-oriented or connection-less servers
® TCPor UDP?

Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

Stateful or stateless servers

Protocol used determines level of reliability

Overhead of setup and tear down of connections

TCP provides reliable-data delivery

o)

© © 0 6

verifies that data arrives at other end, retransmits segments that don’t
checks that data is not corrupted along the way

makes sure data arrives in order

eliminates duplicate packets

provides flow control to make sure sender does not send data faster
than receiver can consume it

informs both client and server if underlying network becomes
inoperable

UDP unreliable — best effort delivery

UDP relies on application to take whatever actions
are necessary for reliability

UDP used if

©® application protocol designed to handle reliability and
delivery errors in an application-specific manner, e.g.
audio and video on the internet

® overhead of TCP connections too much for application

® multicast

Providing endpoint information

® Known endpoint

® Daemon listening at endpoint

® superserver that spawns threads
Connection-oriented or connection-less servers

® TCP or UDP?

Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

Stateful or stateless servers

State = Information that server maintains about the status of ongoing
interactions with clients

Stateful servers

O]

O]

client state information maintained can help server in performing request faster

state information needs to be preserved across (or reconstructed after) crashes

Stateless servers

O]

information on clients not maintained and can change state without having to
inform clients

quicker and more reliable recovery after crashes
smaller memory requirements

Application protocol should have idempotent operations (operations that can
be repeated multiple times without harm)

