
DISTRIBUTED COMPUTING

1

CLIENT-SERVER APPLICATIONS

2

ISSUES IN CLIENT-SERVER

APPLICATION DESIGN

 Many choices arise in the design and
implementation of client/server apps

 Application layering (two vs. three tier)

 Whether the client is multi-threaded

 Whether the server is multi-threaded

3

4 APPLICATION LAYERING

The simplified organization of an Internet search engine into three different layers.

5 APPLICATION LAYERING (2)

The simplest organization is to have only two
types of machines:

 A client machine containing only the programs
implementing (part of) the user-interface level

 A server machine containing the rest,

 the programs implementing the

processing and data level

APPLICATION LAYERING (3) 6

 Figure 2-5. Alternative client-server organizations (a)–(e).

thin client

APPLICATION LAYERING (4) 7

An example of a server acting as client.

ISSUES IN CLIENT DESIGN 8

 Goal: Provide the means for users to interact with
remote servers

 Multithreading

 hide communication latency

 allow multiple simultaneous connections

 Must know or find out the location of the server

 known endpoint (port) vs. a lookup mechanism

 Blocking (synchronous) request or non-blocking
(asynchronous)

 Replication transparency

CLIENT-SIDE SOFTWARE FOR

DISTRIBUTION TRANSPARENCY
9

Transparent replication of a server using a client-side solution.

ISSUES IN SERVER DESIGN 10

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

ISSUES IN SERVER DESIGN 11

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

CONNECTION-ORIENTED

SERVERS
12

 Protocol used determines level of reliability

 Overhead of setup and tear down of connections

 TCP provides reliable-data delivery

 verifies that data arrives at other end, retransmits segments that don’t

 checks that data is not corrupted along the way

 makes sure data arrives in order

 eliminates duplicate packets

 provides flow control to make sure sender does not send data faster
than receiver can consume it

 informs both client and server if underlying network becomes
inoperable

CONNECTION-LESS SERVERS 13

 UDP unreliable – best effort delivery

 UDP relies on application to take whatever actions
are necessary for reliability

 UDP used if

 application protocol designed to handle reliability and
delivery errors in an application-specific manner, e.g.
audio and video on the internet

 overhead of TCP connections too much for application

 multicast

ISSUES IN SERVER DESIGN 14

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

STATEFUL VS STATELESS

SERVERS
15

 State  Information that server maintains about the status of ongoing
interactions with clients

 Stateful servers

 client state information maintained can help server in performing request faster

 state information needs to be preserved across (or reconstructed after) crashes

 Stateless servers

 information on clients not maintained and can change state without having to
inform clients

 quicker and more reliable recovery after crashes

 smaller memory requirements

 Application protocol should have idempotent operations (operations that can
be repeated multiple times without harm)

