
DISTRIBUTED COMPUTING

1

COMPONENTS OF DISTRIBUTED

SOFTWARE SYSTEMS
2

• Distributed systems
• Middleware
• Distributed applications

CHALLENGES(DIFFERENCES

FROM LOCAL COMPUTING)

 Heterogeneity:

 The Internet comprises an heterogeneous collection of
computers (hardware and operating systems), networks,
programming languages, databases, implementations by
different vendors etc.

 Although the Internet comprises different networks, their
differences are masked by the fact that all computers attached
to these networks use the IP protocol (and TCP or UDP at the
transport layer) to communicate with each other.

 Different programming languages have different
representations for characters and other data structures.

 The concept of a virtual machine provides a way of making
code executable on any hardware. The compiler generates
code for a virtual machine rather than for a specific processor.
E.g. the Java compiler generates code for the Java Virtual
Machine (JVM).

3

CHALLENGES(DIFFERENCES

FROM LOCAL COMPUTING)

 Openness

 The openness of the distributed system determines
whether the system is extensible and re-
implemented in various ways. Openness cannot be
achieved until the key APIs of the components of a
system are published and made available to
software developers.

 E.g. the DOM API for XML documents and other Java
APIs such as JDBC, RMI, JNDI are all open source.

4

5 SCALABILITY

 A system is described as scalable if it will remain effective when there is a significant
increase in the number of resources and users. e.g. the Internet is one such distributed
system.

 Challenges in the designing of scalable distributed systems include:

 Controlling the cost of physical resources: for a system with n users to be scalable,
the quantity/cost of physical resources to support them must be at most O(n), i.e.,
proportional to n. So if a single file server can support 20 users, 2 such servers
should support 40 users.

 Controlling the performance loss: algorithms that use hierarchic storage structures
(e.g. LDAP) scale better than those that use linear (e.g. flat file data tables)
structures. Even with hierarchic structures an increase in size (of data) will result in
some performance loss since the the time taken to access hierarchically structured
data is O(log n), where n is the size of the data set.

 Preventing software resources running out: lack of scalability is shown by the 32-bit
IP addresses. The new version (IP v6) will use 128 bit addresses.

 Avoiding performance bottlenecks: algorithms should be decentralized to avoid
performance bottlenecks. E.g. the name table in DNS was originally kept in a single
master file. This became a performance bottleneck. It was then partitioned between
DNS servers located throughout the Internet and administered locally. Caching and
replication can also improve performance of resources that are heavily used.

CHALLENGES(DIFFERENCES

FROM LOCAL COMPUTING)

 Security

 Security of information in distributed systems has three
components:

 Confidentiality: protection against disclosure to unauthorized
individuals.

 Integrity: protection against alteration or corruption.

 Availability: protection against interference that prevents
access to the resources.

 E.g. sending credit card numbers over the Internet in an
E-commerce application.

 Security involves encryption and authentication. Two
other security challenges include

 Denial of service attacks.

6

FAILURE HANDLING

Failures in distributed systems are partial – some components fail while
others continue to function. Hence failure handling can be difficult.
Techniques can be used to:

 Detect failures: E.g. use checksums to detect corrupt data in a file/message. Other
times failure can only be suspected (e.g. a remote server is down) but not detected and
the challenge is to manage in the presence of such failures.

 Mask Failures: Some failures that have been detected can be masked/hidden or
made less severe. E.g. messages can be retransmitted when then fail to be acknowledged.
This might not help if the network is severely congested and in this case even the
retransmission may not get through before timeout. Another e.g. File data can be written
to a pair of disks so that if one is corrupted, the other may still be correct (redundancy to
achieve fault-tolerance).

 Tolerate Failures: Most of the services on the Internet exhibit failures and it is not
practical to detect or mask all the possible kinds of failures. In such cases, clients can be
designed to tolerate failures. E..g. a web browser cannot reach a web server it does not
make the user wait forever. It gives a message indicating that the server is unreachable
and the user can try later.

 Recovery from failures: This involves the design of software so that the state of
permanent data can be recovered or “rolled back” after a server has crashed. E.g.
database servers have a transaction handling ability that enables them to roll back a
transaction that was not completed.

7

COMPUTERS IN THE

INTERNET 8

Date Computers Web servers

1979, Dec. 188 0

1989, July 130,000 0

1999, July 56,218,000 5,560,866

2003, Jan. 171,638,297 35,424,956

© Prof. Elizabeth White Distributed Software Systems

COMPUTERS VS. WEB

SERVERS IN THE INTERNET 9

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4

1997, July 19,540,000 1,203,096 6

1999, July 56,218,000 6,598,697 12

2001, July 125,888,197 31,299,592 25

42,298,371 2003, July

© Prof. Elizabeth White Distributed Software Systems

TRANSPARENCY IN

DISTRIBUTED SYSTEMS

 Access transparency: enables local and remote resources to be
accessed using identical operations.

 Location transparency: enables resources to be accessed without
knowledge of their physical or network location (for example, which
building or IP address).

Access and location transparency are the most important, and are
collectively called network transparency. E.g. of access transparency is
using the same API to access both local and remote files (NFS). An e.g.
of lack of this is using FTP to access files.

An email address such as name@server.com is an example of network
transparency since it provides both access (address of another person is
of same structure whether local or remote) and location transparency
(don’t know the other person’s physical or network location).

10

TRANSPARENCY IN

DISTRIBUTED SYSTEMS

 Concurrency transparency: enables several processes to
operate concurrently using shared resources without
interference between them.

There is a possibility that several clients will attempt to
access a shared resource at the same time. Servers in a
distributed environment tend to be concurrent servers
rather than iterative in order to increase throughput (clients
serviced per sec). In many cases this involves having a new
thread service each client request. It must be ensured that
concurrent access to objects in a distributed application be
safe by using appropriate synchronization techniques

 Replication transparency: enables multiple instances of
resources to be used to increase reliability and
performance without knowledge of the replicas by users
or application programmers.

11

© Prof. Elizabeth White Distributed Software Systems

TRANSPARENCY IN

DISTRIBUTED SYSTEMS

 Failure transparency: enables the concealment of faults, allowing users
and application programs to complete their tasks despite the failure of
hardware or software components.

Failure transparency is exhibited by email which keeps attempting to deliver
mail so the faults are masked.

 Mobility transparency: allows the movement of resources and clients
within a system without affecting the operation of users or programs.

Cell phones exhibit mobility transparency since the caller and called are not
aware of the mobility of their phones.

Web URLs are location-transparent since the name refers to a computer domain
name rather than an IP address. But URLs are not mobility transparent since
your web page will not move to your new work place since all the links in other
pages will still point to the original page. It also prevents replication
transparency because even though DNS allows a domain name to refer to
several computers, it picks one of them when it looks up a name (need to be
able to access all of the participating computers).

12

