
DISTRIBUTED COMPUTING

SYSTEMS

1

REST WEB SERVICES

2

RESOURCE API

 If the foundation of service - is the use and modification of
resources located on a remote system, the use of RPC can
lead to swelling of the interface (NewPerson, EditPerson,
DeletePerson, GetPerson et al.)

 The solution - you must use the standard verbs HTTP (GET,
PUT, POST, DELETE) to work with the resources of remote
systems.
Each procedure, the essence of the subject area is assigned
to the file URI.

 The client should use the standard HTTP verbs with the
corresponding the URI, and the server to perform these
commands, and use standard HTTP responses where
possible.©

РАДЧЕНКО

Г.И.,

КАФЕДРА

СП ЮУРГУ

3

REST API

© РАДЧЕНКО

Г.И.,

КАФЕДРА СП

ЮУРГУ

4

Server

ServiceClient

HTTP method
(GET, PUT, POST, DELETE)

URI

Standard or data types

URI and method
defines a service

Message containes…

Sends
requesrt

Responce Results

Request data (possibly)

Standard status code

REST

 Representational State Transfer (REST) is an architectural
style that abstracts the architectural elements within a
distributed hypermedia system.

 Was introduced and defined in 2000 by Roy Fielding in his
doctoral dissertation

5

6

 Many web services use messages to form their own domain-
specific API. These messages incorporate common logical
commands. CRUD:

 Create Read Update Delete

 However, can lead to a proliferation of messages, even in
relatively small problem domains .

 REST provide a possibility to manipulate data managed by a
remote system, but avoid direct coupling to remote
procedures, and minimize the need for domain-specific APIs.

 HTTP makes it relatively easy for clients to reuse logic found in
remote procedures while insulating them from underlying
technologies. Rather than creating a domain-specific API, one
could leverage the standards defined in the HTTP
specification.

REST

Daigneau, Robert (2011-10-25). Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services.
Pearson Education. Kindle Edition.

EVERYTHING IS A RESOURCE

 Assign all procedures, instances of domain data, and files a
URI.

 A resource may be a text file, a media file (e.g., images,
videos, audio), a specific row in a database table, a
collection of related data (e.g., products), a logical
transaction, a queue, a downloadable program, a business
process (i.e., procedure)— almost anything.

 http://music.site/users/max

 http://music.site/albums/8

 A collection of resources - also a resource

 http://music.site/users

7

Daigneau, Robert (2011-10-25). Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful
Web Services. Pearson Education. Kindle Edition.

REST FUNDAMENTALS

 Statelessness

 State of the client is stored only on client

 All information that server needs to process the request
should be in the request (self-descriptive messages)

 Cached architecture

 The server response can be cached and reused with no new
appeals

 Client-server separation (loose coupling)

 The client knows everything about server interface, but
knows nothing about the server implementation.

8

9 RESOURCE API IN REST

GET PUT DELETE POST

= = = =

READ UPDATE DELETE CREATE

 PUT is used to create or update resources.

 GET is used to retrieve a resource representation.

 DELETE removes a resource.

 POST : used to create a subordinate of the target resource.

10 STANDARDIZED ITEM INTERFACE

http://example.com/resources/item17

GET Get (Retrieve) the state of the item

PUT
Replace this item with another item. If such
item is not exist, than create such item

POST Usually not used

DELETE Delete an item

11 STANDARDIZED COLLECTION INTERFACE

http://example.com/resources

GET
List URIs and another information about items
in the collection

PUT Replace this collection by another collection

POST Create a new item in the collection

DELETE Delete a collection

12 STANDARD REST ACTIONS

Correct REST interface

POST /albums – add new album

GET /albums/2 – get info about album 2

PUT /albums/2 – update album 2

DELETE /albums/2 – delete album 2

13 NOT CORRECT REST ACTIONS

Not correct REST interface

POST /albums/create

GET /albums/show/2

POST /albums/update/2

GET /delete/albums/2

DELETE /albums/3/remove

HTTP SERVER RESPONSES

 REST allow to use standardized media types and status codes.

 Server responses are HTTP-codes indicating the status of the
operation

 200 – OK (“Here is your item”)

 201 – Created (“You added an item successfully”)

 400 – Bad request (“You provided a bad request”)

 403 – Forbidden (“You are not allowed to do this”)

 404 – Not found (“There is no such item”)

 500 – Server error

14

REST VS SOAP

REST SOAP Web Services

Architectural style
A family of standard
protocols

XML, JSON, HTML, JPG, MP3
…

XML.

HTTP – is a basis of all HTTP – a transport layer

Resource – is a key concept Operation – is a key concept

19

REST VS SOAP

 SOAP-services have a description (WSDL), which
allows to generate a client

 SOAP does not allow caching of queries

 SOAP only works with POST-requests

 Application

 SOAP - business applications, distributed
system infrastructure

 REST - the external interface of the system

20

SOAP REQUESTS21

REST REQUESTS22

REST API EXAMPLES

23

24 TWITTER REST API V1.1

GET statuses/retweets/:id

Returns up to 100 retweets of an «id» tweet

GET statuses/show/:id

Returns a single tweet «id»

GET statuses/destroy/:id

Delete an «id» tweet

GET statuses/update

Update the status of the user (create a new tweet)

25
GOOGLE TRANSLATE

REST API

IN:
GET https://www.googleapis.com/language/translate/v2?
key=INSERT-YOUR-KEY&source=en&target=de&q=Hello%20world

OUT :
200 OK
{

"data": {
"translations": [
{

"translatedText": "Hallo Welt"
}

]
}

}

26 PAYPAL REST API

IN: https://api.paypal.com/v1/payments/payment
curl -v https://api.sandbox.paypal. com/v1/payments/payment \ -H "Content-
Type:application/json" \ -H "Authorization:Bearer EMxItHE7Zl4cMdkvMg-
f7c63GQgYZU8FjyPWKQlpsqQP" \ -d '{ "intent":"sale", "payer":{
"payment_method":"credit_card", "funding_instruments":[{ "credit_card":{
"number":"4417119669820331", "type":"visa", "expire_month":11,
"expire_year":2018, "cvv2":"874", "first_name":"Joe", "last_name":"Shopper",
"billing_address":{"line1":"52 N Main ST", "city":"Johnstown", "country_code":"US",
"postal_code":"43210", "state":"OH" } } }] },

"transactions":[{ "amount":{ "total":"7.47", "currency":"USD", "details":{
"subtotal":"7.41", "tax":"0.03", "shipping":"0.03" } }, "description":"This is the
payment transaction description.” }] }'

27 PAYPAL REST API

OUT:
200 OK

{ "id": "PAY-17S8410768582940NKEE66EQ", "create_time": "2013-01-
31T04:12:02Z", "update_time": "2013-01-31T04:12:04Z", "state":
"approved", "intent": "sale", "payer": {

…

DEVELOPING YOUR OWN

RESTFUL-SERVICE

29

SERVER DEVELOPMENT

 Ruby on Rails

 Has a reference implementation of the resource
model

 Easy to learn and understand

 A lot of magic included

 Java – JAX-RS

 The most popular Web service platform

 The most popular language

 Python – Django

 We will try this during our lab.

30

AN EXAMPLE OF JAVA SERVICE
@Path("/stores")

public class StoreService {

@GET

@Produces("application/xml")

public JAXBElement <Stores> getStoresAsXML() {

Stores stores = Stores.getStores();

return new JAXBElement <Stores>

(new Qname("Stores"), Stores.class, stores);

}

@Path("/{id}")

@GET

@Produces("application/xml")

public Store getStoreAsXML(@ PathParam("id") String id) {

// implementation here

}

Daigneau, Robert. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Pearson Education. Kindle Edition.

37

@POST

@Consumes("application/xml")

@Produces("application/xml")

public Store createStore(JAXBElement <Store>
store) {

// implementation here

}

@Path("/{id}")

@PUT

@Produces("application/xml")

public Store updateStore(@PathParam("id") String
id) {

// implementation here

} }

Daigneau, Robert. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Pearson Education. Kindle Edition.

AN EXAMPLE OF JAVA SERVICE38

public class Test {
public static void main(String[] args) throws ClientProtocolException,
IOException {

Client client = Client.create();
WebResource r = client.resource(“http://localhost:8080/xyz”);
MultivaluedMap<String, String> params = new MultivaluedMapImpl();
params.add("foo", "x");
params.add("bar", "y");
// getting XML data: http://localhost:8080/xyz/abc?foo=x&bar=y
System.out.println(r.path(“abc”).

queryParams(params).accept(MediaType.APPLICATION_XML).get(String.class));
// getting JSON data: http://localhost:8080/xyz/abc?foo=x&bar=y
System.out.println(r.path(“abc”).

queryParams(params).accept(MediaType.APPLICATION_JSON).get(String.class));
}

}

AN EXAMPLE OF JAVA CLIENT39

You can use Jersey framework as the reference implementation for
REST support in Java. Jersey contains basically a REST server and a
REST client. it provides a library to communicate with the server
producing REST services.

REST SECURITY

 REST-service is usually publicly available

 Protection is a must!

 To authenticate using a unique token of
the user

 We can use HTTPS to provide security

40

TOKEN

 The client receives all its data (and token)
during login

 The token uniquely identifies the user

 The token is applied to each authorized
message (as a parameter or in the HTTP-
header Authorization)

41

OAUTH
42

