
© GLEB RADCHENKO

DISTRIBUTED COMPUTING

SYSTEMS

1

THE MESSAGE SYSTEM PARADIGM

 The Message System or Message-Oriented Middleware (MOM) paradigm is an

elaboration of the basic message-passing paradigm.

 In this paradigm, a message system serves as an intermediary among separate,

independent processes.

 The message system acts as a switch for messages, through which processes

exchange messages asynchronously, in a decoupled manner.

 A sender deposits a message with the message system, which forwards it to a

message queue associated with each receiver. Once a message is sent, the sender is

free to move on to other tasks.

© Prof. Elizabeth White Distributed Software Systems© GLEB RADCHENKO

2

MESSAGE QUEUES

 At the simplest level, a message
queue is a way for applications and
components to send messages
between one another in order to
reliably communicate.

 They connect producers which
create messages and the consumers
which then process them.

 Within the context of a web
application, one common case is
that the producer is a client
application (i.e Rails or Sinatra) that
creates messages based on
interactions from the user (i.e user
signing up).

© NATHAN ESQUENAZI. ASYNCHRONOUS PROCESSING IN WEB APPLICATIONS

3

The use of message queues is oriented towards asynchronous communication.

Advanteges

 Decoupling: By introducing a layer in between processes, message queues create an
implicit, data-based interface that both processes implement.

 Redundancy : The put-get-delete paradigm, requires a process to explicitly indicate that it
has finished processing a message before the message is removed from the queue.

 Scalability Because message queues decouple your processes, it’s easy to scale up the rate
with which messages are added to the queue or processed.

 Elasticity & Spikability: application needs to be able to keep functioning with this increased
load, but the traffic is anomaly, not the standard. Message queues will allow beleaguered
components to struggle through the increased load.

 Resiliency: Message queues decouple processes, so if a process that is processing messages
from the queue fails, messages can still be added to the queue to be processed when the
system recovers

 Buffering: Message queues help process-consuming tasks operate at peak efficiency by
offering a buffer layer--the process writing to the queue can write as fast as it’s able to,
instead of being constrained by the readiness of the process reading from the queue.

 Asynchronous Communication: Message queues enable asynchronous processing, which
allows you to put a message on the queue without processing it immediately.

USING MESSAGE MANAGER

http://blog.iron.io/2012/12/top-10-uses-for-message-queue.html?spref=tw© GLEB RADCHENKO

4

USING MESSAGE MANAGER

Disadvantages

 the need for explicit use of queues in distributed application;

 the complexity of implementation of synchronous exchange;

 some overhead when use the queue managers;

 the complexity of the response: reply may incur additional
queues on each component that sends the messages.

© GLEB RADCHENKO

5

MESSAGE QUEUE SERVICES

 The MOM paradigm has had a long history in distributed applications.

 Message Queue Services (MQS) have been in use since the 1980’s.

 The IBM WebSphere MQ is an example of such a facility.

 JMS – Java Message Service

 Microsoft Message Queuing (MSMQ - .NET)

© GLEB RADCHENKO

6

RABBITMQ VS ACTIVEMQ

 RabbitMQ (http://www.rabbitmq.com/)

 Is based on the Erlang

 Works on all major operating systems

 Supports many platforms for developers (mostly - Python,

PHP, Ruby)

 Erlang-based configuration files

 Apache ActiveMQ (http://activemq.apache.org/)

 Is based on the Java Message Service

 Most often used in conjunction with Java-stack (Java, Scala,

Clojure, etc).

 Also supports STOMP (Ruby, PHP, Python).

 XML-based configuration
© GLEB RADCHENKO

7

http://www.rabbitmq.com/
http://activemq.apache.org/

© GLEB RADCHENKO

EXAMPLE OF RABBITMQ USAGE

 RabbitMQ as a Service: http://www.cloudamqp.com/

 Sample Application: https://github.com/cloudamqp/java-amqp-example

 Start the Sender (OneOffProcess.java), after - Receiver (WorkerProcess.java)

Sender Receiver

cloudamqp.com

channel.queueDeclare(QUEUE_NAME, false, false, false, null);
String message = "Hello CloudAMQP!";
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
System.out.println(" [x] Sent '" + message + "'");

Sender:

Receiver:

while (true) {
QueueingConsumer.Delivery delivery = consumer.nextDelivery();
String message = new String(delivery.getBody());
System.out.println(" [x] Received '" + message + "'");

}

8

http://www.cloudamqp.com/
https://github.com/cloudamqp/java-amqp-example

SERIALIZATION AND DATA

EXCHANGE FORMATS

© GLEB RADCHENKO 9

MARSHALING

 Marshalling is a process of converting
parameters to pass them via a network between
processes withing remote call

 Marshaling

 by link - an instance of the remote object
resides on the server and does not leave it,
and intermediaries are used for access

 by value - the remote object is serialized and
its copy is passed to another process

© GLEB RADCHENKO

10

DATA SERIALIZATION FORMATS

 Text:

 XML - Extensible Markup Language

 JSON - JavaScript Object Notation

 YAML - YAML Ain't Markup Language (or Yet Another
Markup Language)

 Binary

 Protocol Buffers (Google)

 MessagePack

 Byte stream:

 java.io.Serializable interface

 .NET Serializable attribute

© GLEB RADCHENKO© GLEB RADCHENKO

11

XML VS JSON

<person>

<firstName>John</firstName>

<lastName>Smith</lastName>

<address>

<streetAddress>Downing Street 10

</streetAddress>

<city>London</city>

<postalCode>SW1A 2AA</postalCode>

</address>

<phoneNumbers>

<phoneNumber>812 123-1234</phoneNumber>

<phoneNumber>916 123-4567</phoneNumber>

</phoneNumbers>

</person>

XML
{

"firstName": "John",

"lastName": "Smith",

"address": {

"streetAddress": "Downing Street 10",

"city": "London",

"postalCode": "SW1A 2AA"

},

"phoneNumbers": [

"812 123-1234",

"916 123-4567"

]

}

JSON

291 byte
174 bytes

© GLEB RADCHENKO© GLEB RADCHENKO

12

GOOGLE PROTOCOL BUFFERS

 Protocol Buffers are a method of serializing
structured data, proposed by Google in 2008, as an
alternative to the XML (it was designed to be smaller
and faster than XML).

 A software developer defines data structures
(called messages) and services in a proto definition
file (.proto) and compiles that with protoc.

 This compilation generates code that can be invoked
by a sender or recipient of these data structures.

 Protocol Buffers are serialized into a compact,
forwards-compatible, backwards-compatible but not
self-describing binary wire format .

 PS: Used Diablo 3 ;0)
© GLEB RADCHENKO

13

PROTOBUF

message Car {

required string model = 1;

enum BodyType {

sedan = 0;

hatchback = 1;

SUV = 2;

}

required BodyType type = 2 [default = sedan];

optional string color = 3;

required int32 year = 4;

message Owner {

required string name = 1;

required string lastName = 2;

required int64 driverLicense = 3;

}

repeated Owner previousOwner = 5;

}

.proto

© GLEB RADCHENKO© GLEB RADCHENKO

14

MESSAGEPACK

 MessagePack is an efficient binary serialization
format. It lets you exchange data among multiple
languages like JSON. But it's faster and smaller.

 Was designed to provide transparent conversion
to JSON

Fixed-size data Variable-sized data

Type Value Type Length Body

© GLEB RADCHENKO© GLEB RADCHENKO

15

JSON VS MESSAGEPACK

Architecture of MessagePack by Sadayuki Furuhashi

http://www.slideshare.net/frsyuki/architecture-of-messagepack
© GLEB RADCHENKO© GLEB RADCHENKO

16

http://www.slideshare.net/frsyuki?utm_campaign=profiletracking&utm_medium=sssite&utm_source=ssslideview

MESSAGEPACK

{
"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "Downing Street
10",

"city": "London",
"postalCode": "SW1A 2AA"

},
"phoneNumbers": [

"812 123-1234",
"916 123-4567"

]
}

JSON

174 bytes

84 a9 66 69 72 73 74 4e 61 6d 65 a4 4a 6f 68
6e a8 6c 61 73 74 4e 61 6d 65 a5 53 6d 69 74
68 a7 61 64 64 72 65 73 73 83 ad 73 74 72 65
65 74 41 64 64 72 65 73 73 b1 44 6f 77 6e 69
6e 67 20 53 74 72 65 65 74 20 31 30 a4 63 69
74 79 a6 4c 6f 6e 64 6f 6e aa 70 6f 73 74 61 6c
43 6f 64 65 a8 53 57 31 20 41 32 41 41 ac 70
68 6f 6e 65 4e 75 6d 62 65 72 73 92 ac 38 31
32 20 31 32 33 2d 31 32 33 34 ac 39 31 36 20

31 32 33 2d 34 35 36 37

MessagePack (hex)

144 bytes 83 %

http://msgpack.org/
© GLEB RADCHENKO© GLEB RADCHENKO

17

MESSAGEPACK

 JSON+ZIP VS MessagePack:

 50% drop in performance during packing /
unpacking

 Unable to work with data in stream mode
(directly), you need all the data to provide
decompression

© GLEB RADCHENKO© GLEB RADCHENKO

18

DATA SERIALIZATION FORMATS
 JSON

 human readable/editable
 can be parsed without knowing schema in advance
 excellent browser support
 less verbose than XML

 XML
 human readable/editable
 can be parsed without knowing schema in advance
 standard for SOAP etc
 good tooling support (XSD, XSLT, SAX, DOM, etc)
 pretty verbose

 Protobuf (Google), MessagePack
 very dense data (small output)
 very fast processing
 not intended for human eyes (dense binary)

 Protobuf (Google)
 Built-in support of protocol versions (if you change the protocol, clients can work

with the old version, while not updated)
 hard to robustly decode without knowing the schema (data format is internally

ambiguous, and needs schema to clarify)

© GLEB RADCHENKO

19

DATA SERIALIZATION FORMATS

Basically protocol buffers (protobuf-net) is around 7x quicker than the fastest Base class library

Serializer in .NET (XML DataContractSerializer). Its also smaller than the competition as it is
also 2.2x smaller than Microsoft’s most compact serialization format (JsonDataContractSerializer).

http://www.servicestack.net/benchmarks/NorthwindDatabaseRowsSerialization.100000-times.2010-08-17.html

ProtoBuf.net
ServiceStack

TypeSerializer
ServiceStack
JsonSerializer

Microsoft
JsonDataContract

Serializer
NewtonSoft.Json

Microsoft XML
DataContractSeria

lizer

Microsoft
BinaryFormatter

Больше (раз) 1 1,77 2,09 2,24 2,3 4,68 5,62

Медленнее (раз) 1 2,23 2,58 9,31 7,83 6,93 9,21

0

1

2

3

4

5

6

7

8

9

10

C
o

m
p

ar
ed

 w
it

h
 P

ro
to

B
u

f

Profiling of serialization formats

Bigger (times)

Slower (times)

© GLEB RADCHENKO

20

http://code.google.com/p/protobuf-net/
http://www.servicestack.net/benchmarks/NorthwindDatabaseRowsSerialization.100000-times.2010-08-17.html

Adam Leonard. MessagePack for Ruby version 5
https://gist.github.com/adamjleonard/5274733

© GLEB RADCHENKO

21

WHEN TO USE WHICH

FORMATS?
 XML

 If the system provides a public API as an XML Web-service

 Working with a "classical" system, which already uses XML as a standard
data exchange

 Required standard tools for verification and transformation (eg, to an
HTML) (XSD, XSLT, SAX, DOM, etc.)

 JSON

 If the system provides a public API as a REST-service

 If clients are implemented in JavaScript

 More compact than XML (2-2.5 times), and the easiest to read / edit – so
wherever you want to use XML, think, may be worth using JSON.

 MessagePack – if you need high data processing speed and JSON compatibility,
but you don’t need the data to be readable/editable by the human.

 Protobuf

 If data size and data processing time is essential

 If you need to support protocol updates

 If you implement an internal (non-public) protocol
© GLEB RADCHENKO

22

SUMMARY

 A protocol is a set of rules and agreements,
describing the procedure for interaction between
components of the system.

 There are options for direct communication in DCS
and use message managers.

 RPC technology is used to call a function or
procedure in a different address space

 RMI technology – development of RPC, provides
transparent access to the methods of remote
objects

 You need to choose a Data serialization format that
fits your distributed system

© GLEB RADCHENKO

23

