
© GLEB RADCHENKO

DISTRIBUTED COMPUTING

SYSTEMS

DIRECT MESSAGE TRANSMISSION:

SOCKETS

© GLEB RADCHENKO 7

DIRECT MESSAGE

TRANSMISSION: SOCKETS

 Uses transport layer directly in the form of Middleware.

 A socket is an abstract object that represents the endpoint of the
connection.

 TCP/IP socket is a combination of IP address and port number, for
example, 10.10.10.10: 80.

 Socket interface first appeared in BSD Unix.
© GLEB RADCHENKO

8

message

agreed port
any port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

BERKELEY SOCKETS API (1)
4

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

© GLEB RADCHENKO

BERKELEY SOCKETS (2)5

© GLEB RADCHENKO

SOCKET IMPLEMENTATION

EXAMPLE

C # supports two types of network
connections:

 Server using the TcpListener class objects;

 the client implemented by using objects
of the TcpClient class.

© GLEB RADCHENKO

9

TCPLISTENER AND

TCPCLIENT OBJECTS

 An object of TcpListener class allows only to
listen to a specific port on your computer.

 Any processes of data transmission via this
socket are carried out using the TcpClient
object.

 The AcceptTcpClient() method of the
TcpListener class returns the TcpClient object
that provides the listening port.

© GLEB RADCHENKO

10

SERVER EXAMPLE

using System.Net;
using System.Net.Sockets;

Int32 port = 13000;

IPAddress localAddr = IPAddress. Parse
("127.0.0.1");

TcpListener server = new TcpListener (localAddr,
port);

server.Start ();

//Start listening on port
TcpClient client = server.AcceptTcpClient ();
//After connection create message flow
NetworkStream stream = client.Getstream();

© GLEB RADCHENKO

11

MESSAGING

Writing messages

Byte [] bytes = new Byte

[256];

String data = "text";

bytes =

System.Text.Encoding.UTF.

GetBytes (data);

stream.Write (bytes, 0,

bytes.Length);

Reading messages

Byte [] bytes = new Byte

[256];

String data = null;

int i = stream.Read (bytes,

0, bytes.Length);

data = system.text.

encoding.UTF8.GetString

(bytes, 0, i);

© GLEB RADCHENKO

12

REMOTE PROCEDURE CALL

RPC-REMOTE PROCEDURE CALL

RMI-REMOTE METHOD INVOCATION

© GLEB RADCHENKO 10

RPC TECHNOLOGY

 Remote procedure call is a technology that
allows computer programs to call the function
or procedure in a different address space.

© GLEB RADCHENKO

proc1(arg1, arg2)

proc2(arg1)

proc3(arg1,arg2,arg3)

Process A
Process B

11

THE STACK WHEN CALLING LOCAL

PROCEDURES

© GLEB RADCHENKO

SP

SP

The local variables

of the main program

Data

The return address

Procedure

local variables

The local variables
of the main program

SP

The local variables
of the main program

Prior
call execution

During
call execution

After return

12

RPC IMPLEMENTATION

 The idea: remote procedure call "transparent"
for the local process

 Instead of the local procedure we use the “client
stub”.

 It is called as a local procedure, but instead of
execution it sends a message the remote
machine.

© GLEB RADCHENKO

13

REMOTE PROCEDURE CALL

© GLEB RADCHENKO

Client machine

Client
kernel

Server
kernel

The server machine

Client
stub

Server
stub

Client
process

Procedure(1) Procedure
call

(2) Message-call

(3) Procedure
call

(4) Result

(5) Message-result

(6) Result

14

© GLEB RADCHENKO

15

RPC PSEUDO CODE

main { …
myType a = remoteProcedure (arg1, arg2);
… }

myType remoteProcedure (int arg1, int arg2) {
byte [] mess, response;
string name = “remoteProcedure”;
string addr = “remote.host:1122”;
mess =
encRemoteProcedure (arg1, arg2);

response =
callRemoteProcedure (addr, name, mess);

return
decRemoteProcedureResponce (response);

}

myType remoteProcedure (arg1, arg2) { …
return process(arg1, arg2);
…}

byte[] serverStab (string name, byte[] mess)
{

switch name:
case “remoteProcedure”:

int a, b;
decRemoteProcedure (mess, &a, &b);
myType res = remoteProcedure (a, b);
byte [] response =
encRemoteProcedureResponce (res);

return response;
case …

…}

Client Server

(1) Procedure call
(2) Message-
call

(3) Procedure call

(4) Response

(5) Message-
response

(6) Result

STAGES OF THE RPC

© GLEB RADCHENKO

Call procedure stub

Prepare a message buffer

Organize parameters in the buffer

Add header fields to the message

Execute kernel interruption

Switch to kernel context

Copy the message into the kernel

Determine the destination address

Put the address in the message

header

Install the network interface
Enable timer

Client

Client stub

Kernel

Execute the procedure

Call the server

Place the parameters onto the stack

Unpack the parameters

Switch to the server stub context

Copy the message to the server stub

Determine whether the stub is waiting

Determine the stab, which send the

packet

Validate a package
Interrupt the process

Server

The server

stub

Kernel

16

REMOTE METHOD INVOCATION

In terms of OOP the Remote Method Invocation (RMI) concept was
implemented.

 RMI allows to provide transparent access to the methods of remote
objects, providing

 delivery of parameters of the invoked method,

 message to the remote object to execute the method

 and the transfer of a return values back to the client

© GLEB RADCHENKO

17

REMOTE OBJECT

 The remote object is a collection of some data
that determine its State. This State can be
changed by calling some of his methods.

 Methods and fields of an object that can be
used via remote calls, are available through the
external interface of the objects class.

© GLEB RADCHENKO

18

REMOTE PROCEDURE VS REMOTE OBJECT

© GLEB RADCHENKO

19

procedurecall response

Server

procedure

1

2

3

Clients

Remote Procedure Remote Object

methodcall response

Server

Class A

1

2

3

Clients

state

read write

A1

A2

A3

A PROXY AND A SCELETON

 A client stub that invokes a remote object is
called the proxy.

 Proxy implements the same interface as the
remote object.

 The server-side stub is called the skeleton (in
Java RMI)

 The skeleton is associated with a specific
instance of the remote object and invokes the
method with the desired settings

© GLEB RADCHENKO

20

REMOTE OBJECT USAGE

© GLEB RADCHENKO

The client machine

OS network serivece

The server machine

Client process

Data transfer channel

OS network serivece

Middleware

Proxy reference

Proxy

Remote object
interface

Server process

Middleware

Skeleton

Remote object
interface

Object

21

REMOTE METHOD INVOCATION RMI

public interface ProductCatalogue extends java.rmi.Remote

{

ProductDescription[] searchProduct(String productType) throws java.rmi.RemoteException;

Product provideProduct(ProductDescription d) throws java.rmi.RemoteException;

int deleteProduct(ProductDescription d) throws java.rmi.RemoteException;

int updateProduct(Product p) throws java.rmi.RemoteException;

...

}

public class ProductCatalogueImpl extends java.rmi.server.UnicastRemoteObject
implements ProductCatalogue
{

public ProductCatalogueImpl() throws java.rmi.RemoteException
{ super(); }

public ProductDescription[] searchProduct(String productType)
throws java.rmi.RemoteException
{

ProductDescription[] desc = ProductCatalogue.getDescriptionByType(productType);
return desc;

}
...

}

Interface:

Server – interface realization:

© GLEB RADCHENKO

22

REMOTE METHOD INVOCATION RMI

Server realization:

Client Realization:

public class ProductCatalogueServer {
public ProductCatalogueServer() {

try {
ProductCatalogue c = new ProductCatalogueImpl();
Naming.rebind("rmi://localhost:1099/ProductCatalogueService", c);

}
catch (Exception e) {…}

}
public static void main(String args[]) {

new ProductCatalogueServer();
}

}

public class ProductCatalogueClient {
public static void main(String[] args)
{

try {
ProductCatalogue c= (ProductCatalogue)Naming.lookup(

"rmi://hostname/ProductCatalogueService");
System.out.println(c.searchProduct("book");

} }
catch (Exception e) {…}

}
} } }

© GLEB RADCHENKO

23

