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DIRECT MESSAGE

TRANSMISSION: SOCKETS

 Uses transport layer directly in the form of Middleware.

 A socket is an abstract object that represents the endpoint of the 
connection.

 TCP/IP socket is a combination of IP address and port number, for 
example, 10.10.10.10: 80.

 Socket interface first appeared in BSD Unix.
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BERKELEY SOCKETS API (1)
4

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection
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SOCKET IMPLEMENTATION

EXAMPLE

C # supports two types of network 
connections:

 Server using the TcpListener class objects;

 the client implemented by using objects 
of the TcpClient class.
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TCPLISTENER AND

TCPCLIENT OBJECTS

 An object of TcpListener class allows only to 
listen to a specific port on your computer. 

 Any processes of data transmission via this 
socket are carried out using the TcpClient 
object. 

 The AcceptTcpClient() method of the 
TcpListener class returns the TcpClient object 
that provides the listening port. 
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SERVER EXAMPLE

using System.Net;
using System.Net.Sockets; 

Int32 port = 13000;

IPAddress localAddr = IPAddress. Parse 
("127.0.0.1");

TcpListener server = new TcpListener (localAddr, 
port);

server.Start ();

//Start listening on port
TcpClient client = server.AcceptTcpClient ();
//After connection create message flow
NetworkStream stream = client.Getstream();
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MESSAGING

Writing messages

Byte [] bytes = new Byte 

[256];

String data = "text";

bytes = 

System.Text.Encoding.UTF. 

GetBytes (data);

stream.Write (bytes, 0, 

bytes.Length); 

Reading messages

Byte [] bytes = new Byte 

[256];

String data = null;

int i = stream.Read (bytes, 

0, bytes.Length);

data = system.text. 

encoding.UTF8.GetString 

(bytes, 0, i);
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REMOTE PROCEDURE CALL

RPC-REMOTE PROCEDURE CALL

RMI-REMOTE METHOD INVOCATION
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RPC TECHNOLOGY

 Remote procedure call is a technology that 
allows computer programs to call the function 
or procedure in a different address space.
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THE STACK WHEN CALLING LOCAL

PROCEDURES
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RPC IMPLEMENTATION

 The idea: remote procedure call "transparent" 
for the local process

 Instead of the local procedure we use the “client 
stub”.

 It is called as a local procedure, but instead of 
execution it sends a message the remote 
machine.
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REMOTE PROCEDURE CALL
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RPC PSEUDO CODE

main {   …
myType a = remoteProcedure (arg1, arg2);
… }

myType remoteProcedure (int arg1, int arg2) {
byte [] mess, response;
string name = “remoteProcedure”;
string addr = “remote.host:1122”;
mess = 
encRemoteProcedure (arg1, arg2);

response = 
callRemoteProcedure (addr, name, mess);

return 
decRemoteProcedureResponce (response);

}

myType remoteProcedure (arg1, arg2) { …
return process(arg1, arg2);
…}

byte[] serverStab (string name, byte[] mess) 
{

switch name:
case “remoteProcedure”:

int a, b;
decRemoteProcedure (mess, &a, &b);
myType res = remoteProcedure (a, b);
byte [] response =
encRemoteProcedureResponce (res);

return response;
case …

…}

Client Server

(1) Procedure call
(2) Message-
call

(3) Procedure call

(4) Response

(5) Message-
response

(6) Result



STAGES OF THE RPC
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REMOTE METHOD INVOCATION

In terms of OOP the Remote Method Invocation (RMI) concept was 
implemented.

 RMI allows to provide transparent access to the methods of remote 
objects, providing 

 delivery of parameters of the invoked method, 

 message to the remote object to execute the method 

 and the transfer of a return values back to the client 

© GLEB RADCHENKO

17



REMOTE OBJECT

 The remote object is a collection of some data 
that determine its State. This State can be 
changed by calling some of his methods.

 Methods and fields of an object that can be 
used via remote calls, are available through the 
external interface of the objects class.
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REMOTE PROCEDURE VS REMOTE OBJECT
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A PROXY AND A SCELETON

 A client stub that invokes a remote object is 
called the proxy.

 Proxy implements the same interface as the 
remote object.

 The server-side stub is called the skeleton (in 
Java RMI)

 The skeleton is associated with a specific 
instance of the remote object and invokes the 
method with the desired settings
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REMOTE OBJECT USAGE
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REMOTE METHOD INVOCATION RMI

public interface ProductCatalogue extends java.rmi.Remote

{

ProductDescription[] searchProduct(String productType) throws java.rmi.RemoteException;

Product provideProduct(ProductDescription d) throws java.rmi.RemoteException;

int deleteProduct(ProductDescription d) throws java.rmi.RemoteException;

int updateProduct(Product p) throws java.rmi.RemoteException;

...

}

public class ProductCatalogueImpl extends java.rmi.server.UnicastRemoteObject
implements ProductCatalogue
{

public ProductCatalogueImpl() throws java.rmi.RemoteException
{ super(); }

public ProductDescription[] searchProduct(String productType)
throws java.rmi.RemoteException
{

ProductDescription[] desc = ProductCatalogue.getDescriptionByType(productType);
return desc;

}
...

}

Interface:

Server – interface realization:

© GLEB RADCHENKO

22



REMOTE METHOD INVOCATION RMI

Server realization:

Client Realization:

public class ProductCatalogueServer {
public ProductCatalogueServer() {

try {
ProductCatalogue c = new ProductCatalogueImpl();
Naming.rebind("rmi://localhost:1099/ProductCatalogueService", c);

}
catch (Exception e) {…}

}
public static void main(String args[]) {

new ProductCatalogueServer();
}

}

public class ProductCatalogueClient {
public static void main(String[] args)
{

try {
ProductCatalogue c= (ProductCatalogue)Naming.lookup(

"rmi://hostname/ProductCatalogueService");
System.out.println( c.searchProduct("book");

} }
catch (Exception e) {…}

}
} } }
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