
DISTRIBUTED COMPUTING

1

CLIENT-SERVER APPLICATIONS

2

ISSUES IN CLIENT-SERVER

APPLICATION DESIGN

 Many choices arise in the design and
implementation of client/server apps

 Application layering (two vs. three tier)

 Whether the client is multi-threaded

 Whether the server is multi-threaded

3

4 APPLICATION LAYERING

The simplified organization of an Internet search engine into three different layers.

5 APPLICATION LAYERING (2)

The simplest organization is to have only two
types of machines:

 A client machine containing only the programs
implementing (part of) the user-interface level

 A server machine containing the rest,

 the programs implementing the

processing and data level

APPLICATION LAYERING (3) 6

 Figure 2-5. Alternative client-server organizations (a)–(e).

thin client

APPLICATION LAYERING (4) 7

An example of a server acting as client.

ISSUES IN CLIENT DESIGN 8

 Goal: Provide the means for users to interact with
remote servers

 Multithreading

 hide communication latency

 allow multiple simultaneous connections

 Must know or find out the location of the server

 known endpoint (port) vs. a lookup mechanism

 Blocking (synchronous) request or non-blocking
(asynchronous)

 Replication transparency

CLIENT-SIDE SOFTWARE FOR

DISTRIBUTION TRANSPARENCY
9

Transparent replication of a server using a client-side solution.

ISSUES IN SERVER DESIGN 10

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

ISSUES IN SERVER DESIGN 11

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

CONNECTION-ORIENTED

SERVERS
12

 Protocol used determines level of reliability

 Overhead of setup and tear down of connections

 TCP provides reliable-data delivery

 verifies that data arrives at other end, retransmits segments that don’t

 checks that data is not corrupted along the way

 makes sure data arrives in order

 eliminates duplicate packets

 provides flow control to make sure sender does not send data faster
than receiver can consume it

 informs both client and server if underlying network becomes
inoperable

CONNECTION-LESS SERVERS 13

 UDP unreliable – best effort delivery

 UDP relies on application to take whatever actions
are necessary for reliability

 UDP used if

 application protocol designed to handle reliability and
delivery errors in an application-specific manner, e.g.
audio and video on the internet

 overhead of TCP connections too much for application

 multicast

ISSUES IN SERVER DESIGN 14

 Providing endpoint information

 Known endpoint

 Daemon listening at endpoint

 superserver that spawns threads

 Connection-oriented or connection-less servers

 TCP or UDP?

 Concurrent or iterative servers: handle multiple
requests concurrently or one after the other?

 Stateful or stateless servers

STATEFUL VS STATELESS

SERVERS
15

 State Information that server maintains about the status of ongoing
interactions with clients

 Stateful servers

 client state information maintained can help server in performing request faster

 state information needs to be preserved across (or reconstructed after) crashes

 Stateless servers

 information on clients not maintained and can change state without having to
inform clients

 quicker and more reliable recovery after crashes

 smaller memory requirements

 Application protocol should have idempotent operations (operations that can
be repeated multiple times without harm)

